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Abstract. We establjshfor space-timesobeyingcertain curvatureconditions(con-
sistent with gravity beingattractive) someclear cut connectionsbetweenglobal
hyperbolicityand timelike geodesiccompleteness.Weshow,undersuitablecircum-
stances,that if thefutureofa spacelikehypersurfaceis futuretimelikegeodesically
completethen it is global hyperbolic. A partial converseis also obtained.Oneof
our results is a consequenceof a splitting theorem~forspace-timeswhichadmit
a maximalhypersurface.Our main results are usedto improvecertain aspectsof
somesplitting theoremspreviouslyobtainedin theliterature.

INTRODUCTION

To the Riernanniangeometer,no assumptionis more naturalthanthat of geo-
desic completeness.However,as is well-known, the conceptof geodesiccomple-

tenesshas a very different statusin Lorentziangeometry.For one thing, many
of the space-timesof physical interestare nonspacelikegeodesicallyincomplete.
For another,the naive analogueof the Hopf-Rinow theoremdoesnot hold. The

standardconditionwhich insuresthat two timelike relatedpoints in a Lorentzian
manifold can be joined by a maximal timelike geodesicis not geodesiccomplete-

ness,but global hyperbolicity. In general,in the absenceof any additionalcondi-
tion on space-time,there is no relationship betweenthesetwo concepts.As a
simple illustration, considerthe space-timeobtained by removing the origin

from Minkowski space.By making a suitable conformal change in the metric
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near the origin we obtain a space-timewhich is geodesicallycomplete but not

globally hyperbolic. However, in making the conformal changewe havealtered

the curvature.The main purposeof this paperis to demonstratethat for space-

times which obey certain sectional or Ricci curvature conditions (consistent
with the fact that gravity is attractive), there are some clear cut connections

betweenglobal hyperbolicity andtimelike geodesiccompleteness.
Before proceedingto a detailed description of the main results,we make a

few remarks concerning their general nature.Space-timesobeying the kind of

curvature conditions we shall impose tend to be nonspacelikegeodesicallyin-

complete,either to the past or the future. For this reason,we shall consider

space-times which are complete<<in one direction>> (pastof future),but perhaps

incompletein the other. Moreover,we shall not imposecurvatureconditions,like

the so-called generic condition, which require some curvatureobject to obey

a strict inequality; only weak curvatureinequalitieswill be considered.Theorems

A and B, stated further on in the introduction,showthat,undersuitablecircum-

stances,if the future of a spacelikehypersurfaceis future timelike geodesically

completethen it is globally hyperbolic.Theorem B is a consequenceof Theorem

C, which is a <<splitting theorem>> for space-timeswhich admit a maximal space-

like hypersurface.TheoremD is a partial converseto TheoremA. Global hyper-

bolicity does not imply geodesiccompletenessevenunder favorable curvature

conditions (considera horizontal strip in Minkowski 2-space).However,Theorem

D shows that, under suitable circumstances,if the future of a spacelikehyper-

surfaceis globally hyperbolic then it will be future timelike geodesicallycom-

plete, provided, for example,at least one timelike geodesicis future complete.

We now give a more detailed account of these results. For causal theoretic

notions used,but not defined below, we refer the readerto Hawking and Ellis

[HE].

By a space-timewe mean a C~connectedHausdorff manifoldM (dim M ~ 2),

equippedwith a C~metric g of Lorentziansignature(—, +, . . . + ), with respect
to which M is time orientable. We define a spacelikehypersurfacein M to be

a connectedsubsetS C M with the property that for eachp E S, thereis a neigh-

borhoodU of p such that S is acausal andedgelessU. S is necessarilyan embed-

ded topological submanifold of M of co-dimensionone. A smooth spacelike

hypersurfaceis a connectedC~embeddedcodimensionone submanifold of M

with everywheretimelike normal. (Thosereaders,who prefer,may assumeall space-

like hypersurfacesare smooth). We shall make use of the concept of future

causal completenessintroduced in [G21. A spacelikehypersurfaceS is said to

be future causally completeif and only if for eachp E J~(S), the closure in

S of J(p) fl S is compact. Physically, S is future causally completeprovided

the information from S that reachesan observerat any instant comes from a
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finite nonsingularregion in S. (We refer the readerto [G2] for a more detailed

discussionof the physical significanceof this condition). A future causallycom-
plete spacelikehypersurfaceis necessarilya closedsubsetof space-time.We note

that compact spacelike hypersurfacesand Cauchy surfaces(defined below)
are futurecausallycomplete.

In this paragraphwe recall some basic definitions and results from causal

theory. By definition, a space-timeM is globally hyperbolic if and only if M
is strongly causaland thecausalintervalsJ~(p) fl J(q) are compactfor all p

and q in M. A Cauchj’ surface in M is an acausalspacelikehypersurfacewhich

intersectsevery inextendiblenonspacelikecurve.A basicresult of causaltheory
assertsthat M is globally hyperbolic if and only if M admitsa Cauchysurface.
Given an acausalspacelikehypersurfaceS, one cancharacterizeits beingCauchy

in ter.Tls of its doiTlain of dependenceD(S) = D~(S)U D (S), or its Cauchy
horizon H(S) = H~(S) U If(S). An acausalspacelikehypersurfaceS is Cauchy

iff D(S) = M iff H(S) = 0. In order to expressour results in purely <<futuristic>>
terms we introducethe following terminology. We will say thatan acausalspace-
like hypersurfaceS is a future Cauchy surface if and only if its future Cauchy
horizon is trivial, H+ (S) = 0. A future Cauchy surfaceS separatesM into two

components,one of which is the chronologicalfuture of S, I~(5). Moreover,

since, for a futureCauchysurfaceS J~(5) = D~(S),I~(S)is globally hyperbolic.
To conclude the preliminaries,we make some remarksabout our curvature

conditions.M is saidto obeythestrongenergyconditionif andonly if Ric(X, X) ~ 0

for all timelike vectors X in M. The Ricci curvatureof a unit timelike vector
can be written as minus the sum of tidal accelerations,or in geometricterms,as
minus the sum of timelike sectionalcurvatures.In someof our resultswe require

M to obey the strong condition, while in otherswe imposethe more stringent
requirement that M havenonpositivetimelike sectionalcurvatures.The Fried-

mann cosmologicalmodels, and perturbationsof them,have nonpositive time-
like sectionalcurvatures.

The remainderof the introduction is devotedto stating the main results of
the paper. Our first result establishescircumstancesunderwhich the future
completenessof I~(5) implies the global hyperbolicityof 1~(5).

THEOREM A. Let M be a space-timewith non-positive timelikesectionalcurva-
tures. Let S be an acausalfuture causally completespacelikehypersurfacein M.

Then, if j.f (5) is future timelikegeodesicallycomplete,S is a future ~auchy

surface,H~(5) = 0.

Modulo known topological obstructions,asymptoticallyflat space-timestypi-
cally admit maximal (i.e. mean curvaturezero) hypersurfaces.If one assumes
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in TheoremA that S is maximal then the sectionalcurvaturecondition can be

replacedby the strongenergycondition.

THEOREM B. Let M be a space-timewich obeysthe strong energy condition,

Ric(X, X) ~ 0 for all tinielike ‘ectors X. SupposeS is a smooth acausalfuture

causally completespacelikehypersurfacein M which is maximal. Then, if J~(S)

is future timelikegeodesicallycomplete,S is a future Cauchysurface.

Examplessuch as anti-de Sitter spaceand the Reissner-Nordstromsolution
illustrate the importanceof the future causalcompletenessassumptionin Theo-
rems A and B. TheoremB is a consequenceof the following splitting theorem
for space-timeswith maximal hypersurfaces,which is of someinterestin its own

right.

THEOREM C. Let M be a space-timewhich obeysthe strong energy condition,
Ric(X, X) ~ 0 for X timelike. SupposeM contains a smooth acausalmaximal

spacelikehypersurface5, which is either geodesicallycompleteor future causally

complete.AssumeJ~(5) is future timelike geodesicallycomplete.If y is afuture

complete S-ray such that r(y) fl J~(S) is globally hyperbolic then J~(5) is

isometric to ([0,00) x S, — dt
2 ~ Ii), whereh is theinducedmetricon S.

By an S-ray we meana future inextendiblegeodesic‘y emanatingfrom a point
in S such that ‘y realizes the distanceto S from eachof its points. Eschenburg

[E],Newmann [N]and the author[G3] haveobtainedsplitting theoremsfor space-

times which obey tl1e strong energycondition and contain a completetimelike

line. The proof of Theorem C involvesa variation of argumentsusedin [El and
[G3]. As consequencesof our main results,we obtain some other space-time

splitting results Theorems 2.5 and 2.6, Corollary 3.4) wich improve certain

aspectsof splittingtheoremspreviouslyobtainedin the literature (see [B]. [B + ]).

Such results may be interpretedas <<rigid>~singularity theorems~for discussions

of thispoint see [B], [Gil. [G3]. or the review article [G4].
The next theoremis a partial converseto Theorem A. It shows that global

hyperbolicity togetherwith a little bit of completenesscan imply a lot of com-

pleteness.

THEOREM D. Let M hare nonpositis’e timelike sectionalcurvaturesand contain

a compactfuture CauchysurfaceS. Then,if

(1) sup

where d is the Lorentzian distance function, ,J~(5) is future timelike
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geodesicallycomplete.

Simple example show that the assumptionof compactnessin Theorem D
can not be replaced by future causal completeness.It is natural to consider
to what extent TheoremsA and D remainvalid when the sectionalcurvature

condition is replacedby the strongenergycondition. A recentexampleof Bar-
tnik [B] shows that Theorem D with this weaker Ricci curvaturecondition

doestTlot hold.
In Section 2 and 3 we presentthe proofs of TheoremsA and D, and Theo-

res B and C, respectively,and derive some consequences.We first took up this
issue of the relationshipbetweenglobal hyperbolicity and completenessin [G2].

Someof the results obtainedin the presentpaper can be used to improve some
of the resultsin [G2].

2. SPACE-TIMESWITH NONPOSITIVE TIMELIKE SECTIONAL CURVATURES

We will haveoccasionin this sectionand the next to make use of the follow-

ing lemmawhich is provedin Galloway[G2].

LEMMA 2.1. Let M be a space-timewhich admits an acausal future causally
completespace/ikehypersurfaceS. If H~(5) ~ 0 then for eachp EH~(5) there

existsafutureinextendibleS-ray7containedinD~(5) fl1(p).

The principal geometrictool upon which the proofs of TheoremsA and D

rely is the Lorentzianversion of the triangle comparisontheoremdue to Harris
[Hl]. Below we state the form of Harris’ theoremthat will be neededhere.We
say that (‘y1 , ~2’ 73) is a timelike geodesictriangleprovided7~.~2’ 73 are future
directed timelike geodesicsegmentssuchthat extendsfrom the pastendpoint
of ~ to the future end point of ‘Y3~ and the future end point of ~ .coincides
with the past end of point of 73~Let a3. = (‘y~(0), 7~(0))anda2 =

y ) be the <<angles>>between and ~2’ and ‘y~and 73 respectively.

LEMMA 2.2 (Harris). LetM be a globally hyperbolicspace-timewith nonpositive
time/ike sectional curvatures. For any timelike geodesictriangle ~ ~2’ 73)

in M, with ~2 and 73 maximal, there existsa correspondig time/ike geodesic

triangle in Minkowski space~ ~~2’ 73) such that L(~)= L(71), I = 1, 2, 3
(L = length),a2 ~‘ ~, and ~ a3.

We will need to make use of (a slight extentionof) the conceptof a co-ray
which was introduced in Beem et al [B+]. Let y [0, a) -+ M be a future
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inextendibletimelike ray. Given any x E f(7), let {x~}be a sequenceof points

in M converging to x, and let {s~} be a sequenceof numbersincreasingto a.

For all n sufficiently large we will havex,~~ y(s~).For all such n, let~~}be
any maximal timelike geodesicsegment from x,~to 7(s~).A future co-ray 17

to ‘y is, by definition, any limit curve of the sequence{r~}. In the specielcase
in which x = x for all n, s~is called an asymptoteof y. A co-ray is necessarily

a future inextendiblemaximal length timelike or null geodesic.We say that the

timelike co-ray condition holds on f(’y) fl I~(r) (r = 7(0)) provdedfor all
x E f(’y) fl I~(r), every co-ray to 7 from x is timelike.

LEMMA 2.3. LetM be a globally hyperbolicspace-timewith nonpositivetime/ike
sectional curvatures. If b is a future inextendibletime/ikeray emanatingfrom
r EM then the time/ikeco-ray conditionholdson f(7) fl I~(r).

Lemma 2.3. is proved in Beem et al [B+] in the case7 is future complete.
One can handle the case in which 7 is future incomplete by a similar kind of

argument,andwe omit the details.
The following lemma establishesa basic connectionbetween global hyper-

bolicity and completenessin space-timeof nonpositivetimelike sectionalcur-

vature.

LEMMA 2.4. (The completenesslemma).LetM be a space-timewith nonpositive
time/ikesectionalcurvatures.Let ~ be afuture completetimelikeray in M emana-

ting from r C M, and assumethe set I~(r) 11 f(7) is global!)’ hyperbolic. Then
I~(r) C f (-y) and t (r) isfuture time/ikegeodesicallycomplete.

Proof. It is sufficient to show that N = 1~(r) fl f (‘y) is future timelike geodesi-

cally complete, for then it follows easily that I~(r) is containedin r(7). To
this end, let ~ be a future directedtimelike geodesicwhich is futureinextendible

in N. We may assumethat ~ has a pastend pointx EN. We constructan asymp-

tote ~i of 7 from x, which by Lemma 2.3 is a time/ike geodesicray containedin
N. By its construction,thereexistnumbersr~,t oo andmaximalgeodesicsegments

from x to 7(rk), convergingto p, suchthat for all k,

I (bz~(0),?7’(0))I5~C,

for some positive constantC. SinceN is globallyhyperbalic,1~cannotbe contain-
ed in the compactset J(7(rk), N) flJ~(x, N). It follows that t~meets
N) = J(7(rk), N) — f(7(rk), N) at somepoint Xk. Sinced(xk, ‘y(r~))= 0 for
all k, the continuity of the Lorentzian distance function implies that there exists
an e >0, andforeachk,apointykE~,x <<Yk ~xk,suchthatd(yk,7(rk))<e.
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Let be the segmentof ,~from x tOYk~ and be a maximalgeodesicsegment
from to 7(rk). We apply the triangle comparisontheoremto ~~k’ ~k’ ~

Let = L(nk), bk = L(ok), and = L(pk). By Lemma2.2 thereexistsa time-

like geodesictriangle ~~k’ ~k’ Uk) in Minkowski spacesuch that LQij~)= ak,

= c/c, L(ö~)= bk, and I I I’ where = (.z~(0),~~~(O)>and
are the <<angles>>opposite0k and 0k’ respectively.The lax of cosinesin Mm-

kowski spacegives,
(2) b~=a~+c~+2akckf3k.

The sequence{~k} is boundedby C. If i~is future incompletethen is
bounded.Since ck -+ oO, and {ak} and ~~k} are bounded,(3) implies thatbk —~00~

But the sequence{bk} is boundedby e. Thus, i~must be future complete,and

thelemmais established.
TheoremA is now readilyestablised.

Proofof TheoremA. SupposeH~(5) ~ 0. Choosea pointq EH~(5). By Lemma
2.1, there exist a future inextendible timelike geodesicray ‘y containedin
D~(5) fl f(q) emanatingfrom some point r C S. It follows easily from the

definition of the future domain of dependencethat I~(r) fl f(’y) is contained

in mtD~(5), andhenceI~(r) fl r(
7) is globally hyperbolic.

Suppose7 is futurecomplete.Then,from Lemma 2.4 wehave,I~(r) C f(’y),

which implies in particular that q E r(7). But this contradictsthe fact that
T~(H ~(S))andD~(5) nevermeet. U

The following rigidity result improvesTheorem5.5 in Beem et al. [B~ I by re-

moving the assumptionof globalhyperbolicity.

THEOREM 2.5. Let M be a noncompactspace-timehavingnonpositivetime/ike
sectional curvatures and containing a compact spacelike hypersurface.Then

M is either timelike geodesicallyincompleteor esplits~isometrically into the
product (JR x 5, — dt

2 e h), where (5, h) is a compactRiemannianmanifold.

It is an interestingopen problem to determinewhetherTheorem2.5 remains
valid with the sectionalcurvatureconditionreplacedby the strongenergycondi-

tion; see[G4].

Proof AssumeM is timelike geodesicallycomplete.IfS is acausal,then Theorem
A andits time-dualimply that S is Cauchy.ThatM splits asrequirednow follows

from Theorem 5.5 in [B+]. Supposenow that S is not acausal.Introducethe
Gerochcoveringspace-time(M, ir) (see [HE], p.205). i(’ (5) consistsof counta-

bly many copies 5. of 5, each of which is acausal.Theorem A applied to M
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showsthateach5, is Cauchy. It then follows from basicpropertiesof the covering
that ir(J~~ fl J(~1))= M, andhencethatMis compact,a contradiction. U

Note the proof actually shows that if M is compactthen it is covered by a

space-timeisometric to (JR x S, — dt
2 e h). We now proceedto the proof of

TheoremD, which requiresa little moreeffort.

Proof of TheoremD. The first step in the proof is to constructa futurecomplete

S-ray. Let {q~} be a sequenceof points in M such that d(S, q~)-÷ oc. Let
be a timelike geodesicsegmentfrom r

0 CS toq~which realizesthe distancefrom

S to The sequence{ r~} has an accumulationpoint r CS. By standardconver-

genceresults(see e.g. Beem and Ehrlich [BE]), thereexistsa subsequence~‘y~} of
~7 } which convergesto a future inextendiblecausalcurve 7 emanatingfrom r.
The maximality of the ;‘s insuresthat 7 is a timelike geodesicS-ray’. We prove

that 7 is future complete. (Even thoughy is obtainedas a limit of arbitrarily
long segments,one can show by examplethat 7 neednot be complete if one
drops either the assumptionthat S is Cauchyor the assumptionof nonnegative

timelike sectionalcurvatures).
For technicalreasonswe needto perturbS a constantdistanceto the future.

For fixed ~ > 0, considerS’ = {x C M d(S,x) = ~}. It is not difficult to show

that, for ~ sufficiently small, 5’ is a compactCauchysurface.Let 7 meet 5’
at p. When k is large enough

7k meets5’ at ~k’ say. Let p~be the portion of

7k from to and p be the portion of 7 to the future of p. The sequence

~I~k} convergesto /1, and ~k -÷ p. Using the reversetriangle inequality and the
definition of 5’, one seesthat realizesthe distancefrom 5’ to andhence
p is an S’-ray. Below we will use the fact, insuredby Lemma 2.3, that the time-
like co-rayconditionholdsat p CI~(r) fl 1 (y).

When k is largeenough,~ will be in the timelike future of p. Thus,asin the

proof of the completenesslemma, we can find a sequenceof points~y~} along
i, with C I7q~) such that the sequence~d(yk, ~ )} is bounded.Let

be a maximal segmentfrom to ~ Since p cannotbe containedin the past

of any ~ in the future of p (without a strongcausalityviolation), we canchoose
the yj~sto <<exhaust>>p to the future. In particular,~k <<Yk for k sufficiently
large. Let be a maximal segmentfrom ~k to Sincep is an S’-ray,we have
L(17k) < L(p) < L(’y). Using the fact that the unit vectorsp~(0) —~p’(O) as k -+oo,

the timelike co-ray condition at p implies that the angles{(p~(O),77~(0))}are
bounded.By applying the triangle comparisontheoremto 17k’ ~k 0k as in the

proof of the completenesslemma,one concludesL(uk) = d(yk, ~ oo if it
is assumedthat L(7) <00. Thus 7 must befuturecomplete.

By the completenesslemma,I~(r) C F(
7) and I~(r) is future timelike geo-

desically complete. Fix a point v C J~(r), and considerthe achronalboundary
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81~(i,) = J~(v) — J4. (v). The presentaim is to show that aj~(v) is a compact

achronal Cauchysurface.Since compactachronalboundariesin globally hyper-

bolic space-timesare necessarilyCauchy, it is sufficient to show that 8I~(ii)

is compact.To establishthe compactnessof 8I~(v) it is enoughto showthateach
future inextendiblenull geodesict~ [0, a) -÷ M emanatingfrom u eventually

entersinto 1~(v) (see e.g. the proof of Proposition 7.18 in [BE]). To this end

we let w,~= wheres Ca, andshow thatw CI+ (v) for somen.
The reversetriangle inequality implies {d(r, w~)}is increasing.We show that

d(r, w~)C oo~Choose a point w C 1(v) fl 1~(r). Let an and be maximal

timelike geodesicsegmentsfrom r andw, respectively,to w,~.Let a be a maximal

segmentof length L from r to w. Let be the <‘tangle>> betweenf3 and a, i.e.

= (i3,~(0),— a’(L)). Let a~= L(a~)(= d(r, wa)), and b~= L(13~).Suppose
first that {O~ is bounded.Then j3~(0)} lies in a compactsubsetof the unit
timelike bundle.The ~3,çscannotbe boundedin length, for otherwisetheir end
points {w~} would lie in a compactsubset of M which would imply that 1~is

imprisoned in a compactset. Thus the sequence~b~} is unbounded.The reverse
triangle inequality now implies that a~= d(r, Wn) C eo, as was to be shown.
Now supposethat is unbounded.By taking a subsequence,we may assume

e~C ~. Applying the triangle comparison theoremin conjunctionwith the
law of cosinesgives,

a~=L2 +b,~+2Lb~8~,

where ~ �). The reversetriangle inequality implies that the sequence{ b
1~

is boundedbelow by d(w, v). Hence,from the equationaboveweseethata~t oo•

We have establishedthat d(r, w~)C oo as n C oo, from which it immediately

follows that d(S, w~)C oo Let be a timelike geodesicsegmentfrom x~C S

to w which realizesthe distancefrom S to w. Let x C S be an accumulation
point of x,~. As in the beginningof the proof, thereexistsa subsequence

17k

of which convergesto a futurecompleteS-rayfl. Choosea pointyEI~(x) fl
17 I~(u). (Since Wk C 1~(x) for all k sufficiently large and1~(wk) C 1~’(u)
this set is nonempty).According to Theorem2 in LH2], we know that ‘1 enters
1~(y) C I~(u). But then it follows that 17k entersI~(u) for k sufficiently large,

andhenceWk CJ+ (v) for suchk.
We have shown that each future inextendible null geodesicemanatingfrom

v C J~(r) enters1~(v). As discussedabove,this implies thatai~(u) is a compact

achronalCauchyhypersurface.The proofof TheoremD is now easily completed.
Let a bo a future inextendibletimelike geodesicin M. Since 8I~(v) is Cauchy,
a, if it does not start in 1+ (v), eventuallyenters1+ (v), andhenceis contained

in I~(r) from somepoint on. Since1~(r) is future timelikegeodesicallycomplete,
a is futurecomplete. .



136 GREGORY J. GALLOWAY

Theorem D immediately yields the following improvementof Theorem 5.5

in [B+].

THEOREM 2.6. Let M havenonpositive timelikesectional curvaturesandcontain
a’ compactCauchysurfaceS. Then wehave,

spXEJ+(s)d(5 x)<oo or supXEJ_(s)d(x,S)<oo,

or elseM splitsasin Theorem2.5.

This theoremexpressesin a more generalcontext the totality of incomplete-

nessevidencedin the Friedmannmodels.

3. SPACE-TIMESWITH MAXIMAL HYPERSURFACES

We begin this sectionwith the proof of TheoremC. Let the settingbe as in

the statement of Theorem C in the introduction. Let N be the future directed
unit normal field along S. Let E [0, oo) x 5 ~ (S) be the exponential normal
map defined by,

E(t, x) = exp tNt.

Let : [0, oo) -~Mbe the normal geodesic defined by,

‘y~(t) = E(t,x).

Theorem C is an immediateconsequenceof thefollowing two lemmas.

LEMMA 3.1. If for eachx C 5, ‘y~ is an S-ray containedin 1(7) then E is an
isometry of ([0, 00) X 5, — dt2 e h) ontoJ~(5), where h is the inducedmetric

on S.

LEMMA 3.2. If ‘y~is an S-raycontainedin 1(y) then thereexistsa neighborhood
Vofx in Ssuchthat for eachy C V, ‘y,, isan S-raycontainedin 1 (-y).

Proof of Lemma 3.1. The proof is fairly standard.Let U = E([0, oo) x 5). Since
each is an S-ray, there can be no focal points to S along any future directed

normal geodesic.Furthermore,no two normal geodesicscan intersect,it follows
that U is openandE [0, oc) x S -+ U is a diffeomorphism.

Let u be the unit tangent vector field to the normal geodesics, u =

u obeysthe Raychaudhuriequation (see e.g. [HE]) for an irrotational geodesic
vectorfield,
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(3.1) u(e)=—Ric(u,u)—IVuI2,

where 8 = div(u). By the Schwarzinequality we have,

8 ‘~ (n — 1)1 Vu I 2

which when used together with the curvature assumption in (3.1) gives

(3.2) u(8)+(n—l)’’ ~

Since S is maximal, 8 = 0 along S. Then (3.2) implies thatO ‘~ 0 on U. If

0 < 0 at some point p C U then from (3.2) it follows that 8 4 — oc along the
S-ray a through p in a finite proper time, which implies that there exists a focal
point to S along a. Thus we must have 8 0 on U, and hence from equation
(3.1), u is parallelon U. It follows thatE: [0, oc) x S— Uis an isometry.

It remains to show that U = J~(S). The inclusion U C J~(5) is trivial. If
S is geodesicallycomplete then using the completenessof S and the product

structureof U [0, 00) X 5, oneeasily showsthat every futuredirectedcausal
curve starting at a point of S cannotleave U. Hence,J~(S) C U. To complete
the proof of the lemma we show that if S is future causallycompletethen it

is geodesicallycomplete.

Let Q = 1(7) 17 J~(5). We claim that U = Q. Since,by assumption,7~C
cr(-,) for all x C S we have U C Q. To show that Q C U, it sufficesto show
that Q C mt D~(5), because from each point of mtD~(5) there exists a maximal
timelike geodesicto S which meetsS orthogonally. If Q is not containedin
mtD~(S), then thereexistsa point q CH~(5) 17 Q. Let ,~be a pastinextendible

null geodesicgeneratorof H~(5) with futureend point q. Since,by assumption,
S is future causally complete,the closure of J(q) 17 S, call it A, is compact.

SinceJ~(A) 17 J(q) C Q and Q is globally hyperbolic,oneeasily adaptsPro-
position 6.6.1. and its corollary in [HE] to show that J4’ (A) 17J(q) is compact.
Hence,1~is imprisonedin a compactset containedin Q, which contradictsthe

strong causalityof Q. Thus, U = Q and,in particular,U is globally hyperbolic.
It then follows from (a slight modification of) Theorem 2.5.3 in Beem and
Ehrlich [BE] thatSisgeodesicallycomplete.

We now proceedto the

Proof of Lemma 3.2. Let a be the S-ray;, and set 1(a) = 1’(a) 17 1~(a). The
proof involves an analysis of the Lorentzian Busemann function b : 1(a) —~ JR

associatedto a.Foreachr> 0, definethe function b~:M -~JR by,

b~(x)=r_d(x,o(r)).

For x C J~(a(O)) 17 r(a(r)), b~(x)is decreasingin r and boundedbelow by

d(a(0),x). Thus,urn, b,(x)existsand,by definition, is b(x).



138 GREGORY 3. GALLOWAY

We consider some properuesof b which are valid near the ray a. An open

set U C 1(a) is said to be nice (with respectto ci) if thereexist constantsK > 0

and T> 0 such that for eachq C U and r > T, any maximalunit speedgeodesic
segmenta from q to a(r) satisfies,

g0(a’(O), a’(O)) <K

where g0 is some fixed Riemannian metric on M. We summarizesome facts
concerningnice neighborhoods.

1. Foreacht > 0, 0(t) is containedin a nice neighborhood.

2. Asymptotesto a from pointsin nice neighborhoodsare timelike.
3. {b,} convergeslocally uniformly to b on nice neighborhoods,andhenceb

is continuouson nice neighborhoods.

Properties 1 and 3 are proved in [E], and property 2 is a simpleconsequence
of property I.

The proof of Lemma 3.2 relies heavily on the following result which is proved

in [G3].

LEMMA 3.3. AssumeM obeysthe energycondition, Ric(X, X) > 0 for all X
time/ike. Let ~ be a connectedsmoothspace/ikehypersurfacecontainedin a
sufficientlysmall nice neighborhoodof 0(t), t > 0. Assumethe meancurvature
of ~ is nonnegative,H~~ 0. If b achievesa minimumalong ~ then b is constant

along~.

The meancurvatureof ~ is defined with respectto the futuredirectednormal
along ~. We use the sign conventionin which HE > 0 correspondsto mean

contractionof ~. Although it is assumedin [G3} that M is globally hyperbolic
it is sufficient for the proof of Lemma 3.3 that 1(a) be globally hyperbolic.

We will considerthe Busemannfunction b restricted to level setsof the Lo-

rentziandistancefunctionto 5, ~ :f~(5) -÷ [0,ooj,defined by,

&(q) =d(S, q) = supPESd(y,q).

The reversetriangleinequality implies,

(3.3) ~(q)> tS(p)+ d(p,q), Vp,q CJ~(S),p <q.

By setting q = o(r) in (3.3) and using the fact that a is an S-ray we obtain,

(3.4) b ~ 6 on 1(a),

with equalityholdingalonga.

Supposea : [0, ~) —~M is a timelike geodesicasymptoteto aemanatingfrom

apoint in 1(a). It canbe shownthat (see[El or [G3]),
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b(a(t)) = t + b(a(0)), V t C [0, oo).

Using this together with (3.3) and (3.4) gives,

t + 6(a(0))< 6(a(t)) < t + b(a(0)).

Thus,provided 6(c~(0))= b(a(0)),we have,

(3.5) 6(a (t)) = t + 6(a(0)), Vt C [0, oc).

Fix a > 0. Near 5, 6 just measurespropertime along the futuredirectednormal

geodesicsto S. Thus, for a sufficiently small, thereexistsa neighborhoodU of
a(~0,a)) such that 6 I ~ is smoothand V6 is timelike. Then, for each t C [0, a],

~ ={qCU:6 (q)=t)}

is a smooth spacelikehypersurface.Moreover,we can assumethere is a neigh-
borhood V of x in S such that ~ = E({t} x V) for all t C [0, a]. It is well-known

thatH~= div(V6) I ~ is the meancurvatureof andobeys,

(3.6) aH~/at=Ric(V6,Vo)+IHess612,

(comparewith (3.1)). Let ~ = E,~.By choosing V sufficiently small we can

assumethat ~ is containedin a sufficiently small (in the senseof Lemma3.3)
nice neighborhoodof a(a). SinceH0 = 0, (3.6) implies that the meancurvature
of ~ is nonnegative.From (3.4) we haveb ~ a on ~ and b(a(a)) = a. Thus,

accordingto Lemma3.3,

(3.7) b=a along ~.

For eachy C V. thereexistsa timelike geodesicasymptotea3,: [0, oc) —~M
to a from 7(a) C ~. Considerthe (possibly) brokengeodesica : [0, oc) -+ M
definedby,

(t), O<t<a
3,

(a3,(t — a), a < t <00

For t C [0, a], &(a(t)) = 6(7(t)) = t. For t C [a,cc), 5(a(t)) = t5(a3,(t — a)) =

= (t — a) + a = t, by (3.5)and (3.7). It follows that a is an S-ray,and hence

that a = ~,,. This concludesthe proof of Lemma 3.2, and in turn the proof
of TheoremC.

TheoremC cannow be usedto establishTheoremB.

Proofof TheoremB. SupposeH~(5) ~ 0. By Lemma2.1, thereexistsa future
inextendibleS-ray 7 containedin D~(5) 17 r(p) for somep CH~(5). Theorem
C implies that J~(5) is isometric to the Lorentzianproduct[0, cc) x S. However,
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it follows easily from the product structureof J~(5) that ~ cannotbecontained
in the pastof any point in J~(S). Thus,H~(5) = 0. •

The following corollary improves Corollary 1 in [B] (comparealso Theorem
3(c)in [MT]), by removingthe assumptionof globalhyperbolicity.

COROLLARY 3.4. Let M be a noncompactspace-timewhichsatisfiesthe strong

energy condition and containsa compactsmoothspace/ikehypersurfaceS of
constantmeancurvature. Then M is either time/ike geodesicallyincompleteor
splitsasin Theorem2.5.

Proof SupposeM is timelike geodesicallycomplete.Standardsingularity theory

(see [HE]) forces S to be maximal. Just as in the proof fo Theorem 2.5, the
assumption that S is not acausalleadsto the conclusion that M is compact.Hence,

we can assumethat S is acausal.Then TheoremB and its time-dualimply thatS

is Cauchy,and in particularthat M = J(S) U J~(5). Using standardargumentsto
producefutureandpastS-rays,TheoremCandits time-dualcanthenbe appliedto
obtain the desiredsplitting.

We remark in closing that by suitably modifying the proof of Theorem C

onecanobtaina Riemanniananalogueof this result.
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